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S U P E R C R I T I C A L  T H E R M O C A P I L L A R Y  C O N V E C T I O N  

R E G I M E S  I N  A L I Q U I D  L A Y E R  " O N  T H E  C E I L I N G "  

L. G. Badratinova and S. G. Slavchev UDC 532.5+532.6 

It has been remarked [1-3] that the equilibrium state of an underside ("on the ceiling") liquid layer heated on its free 
side can be stable if the force field is sufficiently weak. If it is isothermal in the equilibrium state, the liquid becomes 

nonisothermal in the presence of perturbations. The resulting thermocapillary forces stabilize long-wavelength perturbations, 

which are the most hazardous. The equilibrium state has a stability threshold, which determines the critical relation between 

the destabilizing force of  gravity and the stabilizing thermocapillary effect. 
In the present article we determine the conditions whereby steady thermocapillary flow generated in a supercritical 

region forms a planar, single-vortex structure in a layer whose thickness is not constant, but varies monotonically along the 

layer. We also demonstrate the existence of supercritical regimes with a double-vortex flow structure and a free surface 

geometry with a convexity or concavity facing downward toward the underlying gaseous phase. 

1. L O N G - W A V E L E N G T H  EQUATIONS 

Let a liquid layer be contained between horizontal solid plates z = 0 (ceiling) and z = d (floor) and occupy the region 

0 < z < h(x, t). Constant temperatures T O and T10 are specified on the plates z = 0, d. The region h(x, t) < z < d is 

occupied by a heat-conducting gas of negligible density and viscosity. The thermal conductivities X, X 1 and thermal diffusivities 
X, X1 of the liquid and the gas (respectively), the kinematic viscosity v and density p of the liquid, and the acceleration of 

gravity g are assumed to l~e constant. The liquid--gas system exists in a low-gravity environment. 

The coefficient of  surface tension cr is assumed to be a linear function of the temperature T: 

a = a o - a r [ T  - min(Tlo , -- To)I. (1.1) 

In Eq. (1.1) a 0 and a T are specified positive constants. We propose to investigate two-dimensional flows, for which the velocity 

vector has two components u and w in the directions of the x and z axes, respectively, neither of  which is identically zero. We 

denote by p, T, and T 1 the pressure of the liquid and the temperatures of  the liquid and the gas, respectively. We introduce 

the dimensionless variables 

x '  = x / L ,  z'  = z / d ,  h'  = h / d ,  t' = U t / L ,  

u'  = u / U ,  w' = w / e U ,  p '  = p d 2 / p v U L ,  

0 = [T - min(Tlo, T o ) ] / [ T  - rain(T, 7 " ) l / I r  - r l .  
(1.2) 

Here L is a characteristic longitudinal dimension; we assume that e = d/L is a small parameter, and U is a characteristic 

velocity of thermocapillary motion: U = t IT10 - T O I o/p~,. 
The state of  the liquid is described by the Navier-Stokes  and convective heat-transfer equations. The temperature in 

the gaseous phase is determined from the heat-conduction equation. The velocity obeys the no-slip condition on the plate z = 0. 

The kinematic condition is satisfied at the interface, along with two dynamical conditions expressing the fact that the normal 

component of the stress vector is equal to the capillary pressure and that the tangential stress is equal to the stress produced 

Novosibirsk. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 2, pp. 58-66, March-April, 1994. 

Original article submitted April 15, 1993. 

216 0023-8944/94/3502-0216512.50 �9 1994 Plenum Publishing Corporation 



by the variability of  the surface tension. The system is augmented with the conditions of continuity of  the temperatures and 

heat fluxes at the interface and by the specification of the temperatures on the solid plates. This system of equations is written 

in the dimensionless variables (1.2): 

a t 0 < z < h  

a t h < z < l  

u =  - l ~  = e 2 R e (  u, + uu + wu=) - e2u~,, 

Pz + Y = e2w, - e4Re(w + uw + ww) + e4w, 

u + w =  0 , 0  = e2RePr(O,+  uO + ~ 9 )  - e:8 ; 

(1.3) 

Ou: = e'z:lRePrOu - e2OL~; (1.4) 

a t z  = h  

a t z  = 0  

a t z =  1 

[.~ + ~(~ - ~.~ - ~h~w + 2h~ - 2h~)l • 

( l  + ~ ) - ' / ~  = - o  , o = o, ,  

O_ - ehO = A (OL:-- CheLa); 

(1.5) 

u = w =  0 , 0 = 0 0 ;  (1.6) 

el = 0to" (1.7) 

The prime is dropped from the dimensionless variables for convenience; Re = UL/v and Pr = v/x are the Reynolds and Prandtl 

numbers, X. = X1/X, X. = X l / X ,  and 

a = e2ao/ar ITs0 - T01, r = --- e2pgt2 /ar  IT,0 - r01 (1.8) 

are dimensionless parameters characterizing the ratio of the capillary forces and hydrostatic pressure to the thermocapillary 

forces. The plus and minus signs in Eq. (1.8) and elsewhere indicate that the positive direction of the z axis is opposite to the 

force of gravity (layer on the floor) or in the same direction (layer on the ceiling), respectively. 

To obtain long-wavelength approximation equations, it is necessary to pass to the limit e --- 0 in Eqs. (1.3)-(1.7). 

Assuming that the quantities e2RePr, e2Re, e2x.tRePr, and eX. tend to zero and that ~ and 3' remain constant in the limit e --, 

0, from Eqs. (1.3)-(1.7) we obtain a boundary-value problem for the long-wavelength approximation, from which explicit 

expressions for the pressure, velocity, and temperature of the media in terms of the thickness h are found by integration: 

p = r ( h  - =) - , ~ h ,  

u = (z2/2 - zh)O,h ~ - ah~ , )  - z(O,)~, (1.9) 

. , '  ffi - ( r ,h - , - , , ~ ) =  + ~ l~.h.,d - ~ h . , . ,  + (o . , ,L  1; 

1 1 
0 = ,l.sgn(Tlo - T o ) z / ( l  - h + 2.h) + ~ - ~ sgn(Tlo -- To) , 

(1.10) 
1 1 

o ,  = s g , ( r , o  - To)i= - 1 ) / ( 1  - h + ~ . h )  + ~ + ~ s g n ( r , o  - 70) .  

In Eqs. (1.9) O h is the temperature on the free boundary. An expression for the function O h is obtained by substituting 

z = h into the first (or second) equation (1.10). An equation for the thickness h(x, t) is obtained from the kinematic condition 
on the basis of  expressions (1.9) and has the form 
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• r j ? h  h a ] 
h, = ~"[ 2(1 - h + ~.h) ~ + ~ O , h ,  - a h  ) j .  (1.11) 

Equations (1.9)-(1.11) describe planar thermocapillary flows in the layer 0 < z < h in the long-wavelength 

approximation. The initial data for the function h are not given, since only steady (time-invariant) flows and the stability of 

the equilibrium state are investigated below. 
The expression in the brackets in l~q. (1.11) gives the mass flow of liquid across the layer. In this article we are 

interested only in steady-state solutions with zero crossflow. To find such steady-state solutions, we obtain the following 

equation from (1.11) after making the substitution ~ = ~ '3k. /2a.x:  

h ' "  - sgn(Tlo - To) h' = 0, 
(1 - h + ~.,h) 2 (1.12) 

in which 

2ysgn(Tlo- To) __ 2sgn(Tlo- To)pga;" 
G = - 3a. = + 32.%1T:o- Tol ' (1.13) 

and the prime denotes differentiation with respect to ~. 

2. STABILITY OF E Q U I L I B R I U M  OF A PLANE LAYER 

The stability of  the equilibrium state against long-wavelength perturbations can be analyzed on the basis of the long- 

wavelength convection model (1.9)-(I .  11). Equation (1.11) has the solution h -= h 0, h 0 E (1, 0). It is evident from Eqs. (1.9) 
and (1.10) that this solution corresponds to the mechanical equilibrium state of  a layer with a piecewise-linear temperature 
distribution along z. Linearizing Eq. (1.11) in the neighborhood of the equilibrium position h = h 0 and substituting the 

perturbed thickness h = li 0 + /~exp(X~t + i~x) (/5 is a small amplitude) into the result, we obtain an equation for the growth 

rate X~: 

3 ) , . s g n ( T l o -  To)h3o 
2 ffi - 2 (G. - G)w 2 - aw 4, (2.1) 

where the parameter G is given by Eq. (1.13), and 

c . =  
ho(l _ ho + ~ , ;~2-  (2.2) 

The last term in Eq. (2.1) can be disregarded in the limit o~ --, 0. The evolution of the long-wavelength perturbations obeys the 

product law sgn(Tlo - T0)(G, - G). 
The growth rate ku is positive for a ceiling layer heated from the ceiling side, T O > TlO, where the parameter G < 0. 

A threshold of stability exists in the range of long-wavelength perturbations when the layer is heated at the free surface, i.e., 
when T O < T10. The stability condition (Xr < 0) has the form G < G. .  The equilibrium state of  the ceiling layer heated on 
the side of  the gaseous phase is unstable for G > G .  

For a floor layer heated on the side of the gaseous phase, T10 > TO, we have G > 0 and X~ < 0. The equilibrium 
state is stable against long-wavelength perturbations. If  it is heated from the floor side, T10 < T o, the equilibrium is stable 
if G > G,  and is unstable if G < G,.  

In these cases the condition for loss of  stability of the equilibrium state of  the layer against perturbations of infinite 
wavelength reduces to the equation G = G.,  in which G and (3. are expressed by Eqs. (1.13) and (2.2). We note that the 

equation G = G .  can be obtained from the general equation describing the critical condition for the loss of  stability of  the 
equilibrium state of  a heated two-layer fluid contained between parallel plates [1] by passing to the limit o~ --, 0, p .  --, 0 , /x ,  --- 

0, where p .  and/~,  are the density and dynamic viscosity ratios of the fluids. 
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3. STANDING W A V E  W I T H  A M O N O T O N I C A L L Y  VARYING FREE SURFACE L E V E L  

Equation (1.12) is invariant under the transformation ~ --* ~ + const. Let us assume for definiteness that the value of 

h for ~ = 0 is the same as the unperturbed value, i.e., h(0) = h 0. We investigate the solutions of Eq. (1.12) for which h(~) 

is a monotonic function on ( - o o ,  oo) satisfying the conditions h ' ( - o o )  = h'(oo) = 0. Since the function h(~) is monotonic, 

we can regard h'(~) as a function of  h. Denoting by h 1 and h 2 (h 1 < h2) the values of  h obtained for ~ = :t: o0 in the course 

of solving the equation, we obtain 

h '  I , . , ,  = h '  Ih-,~ = 0. (3.1) 

Making use of Eq. (3.1) and integrating twice, from Eq. (1.12) we obtain the expression 

h '2 = ( h  2 - h l ) -Z(h2  - h)  ( h  - h t ) F ( h  ) ,  (3.2) 

in which F(h) denotes the fimction 

where 

F = (~, - ~,~) ( h  - h : )  -~ + (~, - ~'2) (h2  - h )  -~" (3.3) 

~o = sgn(Tto - To) [ 2 h l n [ h / ( 1  - h + 2 . h ) l -  G h - l ,  (3.4) 

and r and ~2 are the values of (p at the points h 1 and h 2. 

Taking into account the invariance of Eq. (1.12) under the transformation ~ -* - ~ ,  we analyze the solutions for which 

h(~) is a monotonically increasing function. From Eq. (3.2) we obtain the inverse dependence of  ~ on h in the quadrature form 

* dr 
= (h~ - h i ) f  

*0 4(h2 - T) (3 - h~)F(r)" (3.5) 

The following condition must be satisfied in order for Eqs. (3.3)-(3.5) to describe a standing wave of  the level 
elevation: 
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F(r)  > 0, r E (hi, h2) , 0 < h 1 < h 2 < 1. (3.6) 

The quantity ~ must be equal to - co, + co for h = h 1, h 2. From this result and from the validity of the expansions 

F(v) -- ~o'(ht) + (9'1 - ~~ - hi) + o(r - hi), 

in the limit ~" --* h 1 and 

F(v) --~o'(h2) + (~o 1 - 9,2)/(h2 - hi) + 0(3 - h2) 

in the limit z - ,  h 2 we deduce the necessity of  two more conditions 

~o'(hl) + (~o 1 - ~o2) (h 2 - hi) -I = 0; (3.7) 

~"(h2) + (~'l - ~'2) (h2 - hi) -I = 0. (3.8) 

It is evident from Eqs. (3.3)-(3.5) that the profile of the free surface depends on the four dimensionless parameters X., G, h 1 , 

and h 2. By virtue of  conditions (3.7) and (3.8) only two of these parameters are independent. 

Substituting expression (3.4) and carrying out several transformations, from (3.7) and (3.8) we obtain the equations 

ht(l - h 2 + ~..h2) (h 2 - hi) 12 -(1 - 2.)h I - (1 - ~l.)h 2] 

ln'h2(l - tl I + •,hl) + (tl I + /12) (J - h t + ~ . . h t )  (1 - /I 2 + 2 . / 1 2 )  
0; (3.9) 

2 
a = (3.10) 

(1 - h I + 2 . h l )  ( l  - h 2 + ,~.h2) (h  I + h2)'  

which interrelate the parameters X., G, h 1, and h 2. 

It is evident from Eq. (2.10) that a solution can exist only for G > 0. For a floor layer (3' > 0), according to (1.13), 

a solution can exist only if the layer is heated from the floor side. For a ceiling layer (3" < 0), according to (1.13), a solution 

can exist for T10 > T o, i .e. ,  if the layer is heated from the side of the free surface. Figure 1 shows the standing wave 

amplitude a = h 2 - h 1 a s  a function of the minimum level h 1 for certain values of X.. This dependence is plotted from the 

results of the numerical solution of Eq. (3.9). The dashed lines 1 and 2 correspond to the limits X, ---, 0 and a --, 1 - h 1 and 

define the boundary of the region in which solutions in the form of a standing wave of the level elevation can exist. The validity 

of inequality (3.6) in this region has been verified numerically. We f'md that this inequality is satisfied everywhere in the region 

for a ceiling layer but not for a floor layer. Consequently, solutions in the form of a standing wave of  the level elevation exist 

only for a ceiling layer heated on the side of the free surface. 

It is evident from Fig. 1 that the standing wave amplitude becomes a maximum either in the limit h 1 ---- 0 0,* < X0 -- 

0.22) or in the limit h 2 --, 1 () , .  > xO). For ) , .  > ) 0  the maximum amplitude decreases with increasing value of  ) , . ,  tending 

to zero as X. --, 2/3. For  a = 0 we have h 2 = h 1 = h 0. Consequently, for a given value of  k .  the a(hl )  curve describes the 

amplitudes of  steady-state solutions corresponding to an equilibrium state with h = h 0. The velocity, pressure, and temperature 

for these solutions are found in terms of  h(~) according to Eqs. (1.9) and (1.10). 

The value X. = 0.087 corresponds to the system g lyce r in -a i r  at a temperature of  15~ and X.  = 0.583 corresponds 

to the system g lyce r in -o l ive  oil at room temperature, where olive oil takes the role of the "gaseous phase." The ratio # .  = 

#1//~ of the dynamic viscosity coefficient of olive oil/~1 to that of  glycerin/~ is equal to 0.043. Consequently, the dynamical 

influence of  a layer of  olive oil on a layer of glycerin can be disregarded. 

The thickness h 0 at which branching of  the equilibrium state takes place depends on the parameter  k . .  The analytical 

dependence of  h 0 on >,, is obtained by representing Eq. (3.9) by a series expansion in the small amplitude in the neighborhood 

of the equilibrium state with h I = h 2 = h 0 and setting the first nonvanishing term of the expansion [which is O(a3)] equal to 

zero. This dependence is given by the equation 

h o = 1 / (3 (1  - , l .)) ,  (3.11) 

which is derived in [3], where an analytical representation is given for a small-amplitude solution. Thus, steady-state convection 

with a monotonically varying free surface level can exist in a ceiling liquid layer only in the special case when the thickness 
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h o of the layer in the equilibrium state is related to the ratio of the thermal conductivities of the gas and the liquid by 

Eq. (3.11). 
Figure 2 shows the wave amplitude a as a function of the parameter G, plotted by means of Eqs. (3.9) and (3.10). The 

critical values G .  at which branched steady-state solutions appear are equal to 6.16, 4.73, 4.05, and 2.81 for X. = 0.087, 0.3, 

0.4, and 0.583, respectively. All branched solutions exist in the supercritical region G > G. .  It is reasonable to expect that 

they will be stable. Clearly, the interval of values of  the parameter G wherein branched solutions exist decreases as X. 

increases. 
For X, = 0.583. the parameter G varies from G,  = 2.81 to the value G = 2.86, at which the wave amplitude is equal 

to 0.4. For the system glycerin-olive oil the parameter a T -- 0.2 dyn/(cm. *C), and the difference in the densities is p = 0.342 

g/cm 3. If  the acceleration of gravity is equal to 10-2g0, we infer from Eq. (1.13) that G,  = 2.81 is attained at the critical 

differential temperature (T10 - To) = 6.82~ and G = 2.86 is attained for TlO - T O = 6.69~ Consequently, when the 

differential temperature across the plates decreases by 0.13~ the standing wave amplitude increases from zero to 0.4, at 

which h 2 = 1 (a ceiling layer of glycerin comes into contact with the opposite plate at infinity). 

For an acceleration of  gravity g = 10-2g0 and d = 1 cm, estimates based on Eq. (1.13) for a ceiling layer of glycerin 

show that branched steady-state solutions occur at a differential temperature (T10 - TO), -- 37.5~ and exit up to T10 - T O = 
18.2~ 

4. STANDING WAVES W I T H  A CONVEXITY T O W A R D  THE GASEOUS PHASE 

We now investigate the existence of solutions of  Eq. (3.2) in the form of a standing solitary wave with a convexity 

facing the gaseous phase in the neighborhood of  ~ = 0. We have h = h 1 for ~ = + oo and h = h 2 for ~ = 0, where h 1 < 

h 2. The solution must satisfy conditions (3.1) and be described in the interval ( - o o ,  0) by Eq. (3.5) with h 2 as the lower limit 

of integration. The value of  ~ in Eq. (3.5) must tend to - o. in the limit h --, h 1. Now only the one equation (3.7) has to be 

satisfied instead of  both Eq. (3.7) and Eq. (3.8). From Eq. (3.7), taking Eq. (3.4) into account, we obtain the dependence of 
the parameter G on the levels h I and h2: 

G - m 2 It, l n h2(i - h 1 + 2 . h  l) 

(h 2 h~) 2 [" :  h~(l - /h + ~t.h2) 1 - h 1 + x.h j" (4.1) 
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In general, the profile of  the free surface depends on three parameters: hi ,  h 2, and X,. Passing m the limit h 2 ~ h 1 = 

h 0 in Eq. (4.1), we infer that G --, G, ,  where G ,  is given by Eq. (2.2). In the calculations we analyze the two-parameter family 

of solutions for which the average level (h 1 + h2)/2 is constant and equal to the unperturbed level h 0. The value of X, is varied 

from 0 to 1.5. For X, E (0, 1.5) and h 0 E (0, 1) the value of G given by Eq. (4.1) is positive, so that, according to (1.13), 

a solution can exist for a ceiling layer if T10 > T O and for a floor layer if T10 < T 0. The sign of F depends on sgn(T10 - 

TO). A positive value of  F(h) for h E (h 1, h 2) implies the existence of a standing wave with a convexity toward the gaseous 

phase for a ceiling layer, and a negative value implies the same for a floor layer. If F is not an alternating function for h E 

ga 1, hz], solutions of the type in question do not exist for either a floor layer or a ceiling layer. 

An analysis of the sign of the function F(h) indicates the following. For a ceiling liquid layer heated on the side of the 

gaseous phase a steady-state solution in the form of a standing wave with a convexity toward the gaseous phase exists for any 

X, E (0, 1.5] if the thickness of  the undisturbed layer h o _< 1/3. Such a solution exists for h 0 > 1/3 if the thermal 

conductivity ratio X, lies in the interval [k,(ho), 1.5], where 

a . (ho )  = (3h  o - l ) / 3 h  o. (4 .2)  

If h 0 > 1/3 and h ,  = k,(h0), then the function F(h) --- 0 in the limit h ~ h 2, and Eq. (3.8) is satisfied. The integral 

in Eq. (3.5) diverges as h --- h 2. The solution degenerates into a solution of the level-elevation standing wave type. If  h 0 > 

1/3 and 0 < X, < X,(h0): solutions of the standing wave type with a convexity do not exist for either a floor layer or a ceiling 

layer. A solution is also nonexistent for a floor layer if h 0 < 1/3. 
The branching pattern of  the equilibrium state of a planar ceiling layer of glycerin is shown in Fig. 3 for the case when 

the lower medium is air (X, = 0.082) and in Fig. 4 for the case when the role of the "gaseous phase" is taken by olive oil 

(X, = 0.503). Figure 3 shows the wave amplitude a as a function of the parameter G for h 0 = 1/4 and h 0 = 1/3. The dashed 

line corresponds to the value h 0 = i/[3(1 - k,)]  = 0.36, at which the solution degenerates into a s .tymding wave of the level 

elevation. The branches in Fig. 4 correspond to h 0 = 1/4, 1/3, 1/2, 2/3, and 3/4. The solution degenerates for h 0 = 1/[3(1 - 

X,)] = 0.84. 
The value a = 0 is stable for the undisturbed layer when the parameter G is smaller than the value given by Eq. (2.2): 

G,(h o, X,), at which the solution branches. All branched solutions exist in the supercritical region. 

5. STANDING THI~RMOCAPILLARY WAVES 

Equations (3.3)-(3.5) describe a solution in the form of a standing solitary wave with a convexity facing the gaseous 

phase in the neighborhood of  ~ = 0 if the lower limit of integration in Eq. (3.5) is h = h 1 and the integrand has a 

nonintegrable singularity for h = h 2 (h 2 > hl). From Eqs. (3.8) and (3.4) we fred the dependence of  the parameter G o n h  1, 

h 2, and h , :  

G - - -  
2 r h~(1 - ~ + ~ . t~  

(h2 -hl)a [hlln h2(l _ hi + 2h 0 
h 2 - h~ 1 +, (5.1) 
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In the limit h 2 --, h 1 = h 0 we infer from Eq. (5.1) that the parameter G tends to the value G ,  given by Eq. (2.2). We have 

investigated solutions for which (h 1 + h2)/2 = h 0 in the case ~,, E (0, 1.5). The analysis of  the wave amplitude a = h 2 - 

h 1 as a function of the parameters G ,  and X, and the sign of the function F in the interval (h 1, h2) yields the following result. 

For a ceiling layer heated on the side of the gaseous phase a steady-state solution in the form of a standing wave with 

a convexity toward the gaseous phase exists if the thickness of the undisturbed layer h o _> 1/3 and the parameter k ,  belongs 

to the interval (0, k,(ho)), where k,(h0) is given by Eq. (4.2). Branching takes place in the supercritical region. For h 0 < I/3 

a solution of the investigated type does not exist for a ceiling liquid layer. In the case of a floor layer a solution with a 

concavity toward the gaseous phase does not exist for any value of h o E (0, I). 
Figure 5 shows the amplitudes of the branched solutions as functions of the parameter G for three values of the 

thickness h o in the system glycerin-air  (with the glycerin layer on the ceiling). 
For all values of h 0 the solutions cease to exist when the thickness h 2 --, 1 for ~ = + oo. Here the minimum level h 1 --, 

0 for h 0 = 1/2. In the limit h 2 --- 1 we have h l --, 0.5 if h o = 3/4, and we have h 1 --, 1/3 if h 0 = 2/3. Estimates show that 

branched solutions emerge for an acceleration of  gravity g = 10-3go when the critical differential temperature is equal to 

23.65~ 47.310C, and 70.01~ for thicknesses h 0 = 3/4, 2/3, and 1/2, respectively. The differential temperature decreases 

along each branch. For h 2 = 0.98 it is equal to 3.49~ 18.82~ and 27.6~ for hl = 3/4, 2/3, and 1/2. 

The fimction h(~) is even for a standing wave convex or concave toward the gaseous phase. For ~ = 0 we have h' = 
h"  = 0 and, according to Eqs. (1.9) and (1.10), the longitudinal velocity component u = 0. The flow therefore has a double- 

vortex structure. 
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